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Analogous to an algebraic Reynolds stress model, the algebraic heat flux model (AHFM) is derived from a
second-moment closure by invoking the weak-equilibrium condition. The present study investigates this
condition in detail as it applies to the advection and diffusive-transport terms. For the advection term, the
correct form of this condition in non-inertial frames is obtained by means of an invariant Euclidean trans-
formation. The validity of the diffusive-transport condition is examined through an a priori test using a
DNS database for rotating turbulent channel flow with heat transfer. It is shown that the weak-equilib-
rium condition applied to diffusive-transport term tends to fail in the near-wall region. An alternative
form is proposed that is based on an asymptotic analysis of the transport equation budget in the near-
wall region. An evaluation of proposed form shows that it has the potential to improve the predictive
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ability of an ARSM for flows involving system rotation and/or streamline curvature.
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1. Introduction

There are currently many studies directed toward developing
models for the prediction of heat transfer in turbulent flows.
Among the various Reynolds-averaged approaches, it appears that
a second-moment closure (SMC) is capable of describing most of
the essential features of turbulent flow with heat transfer. How-
ever, the SMC is less appealing for application to flows involving
complex geometries because of the numerical difficulties associ-
ated with its high computation cost compared with a linear eddy
viscosity model (EVM). The algebraic heat flux model (AHFM)
emerges as an alternative that provides a systematic approach to
deriving a non-Boussinesq constitutive relations for turbulent heat
flux vector, while retaining a many of the features that a SMC pos-
sesses. Thus, the interest in deriving an algebraic vector heat flux
representation for predicting turbulent heat transfer has increased.

Numerous studies have been devoted to the development of
complex algebraic representations for the turbulent heat flux
(Rogers et al., 1989; Lai and So, 1990; So and Sommer, 1996; Dol
et al., 1997; Shabany and Durbin, 1997; Rokni, 2000; Abe and Suga,
2001; Hattori et al.,, 2006). Wikstrom et al. (2000) utilized a
systematic modeling approach for forming an implicit algebraic
relation for the turbulent heat flux and proposed a method to
obtain a fully explicit form from this using the Cayley-Hamilton
theorem for two- and three-dimensional flows. So et al. (2004) pre-
sented a method for deriving an explicit algebraic model for two-
dimensional incompressible non-isothermal turbulent flows with
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the aid of tensor representation theory. While all these studies
have contributed to the development of algebraic representations
for the heat flux vector, they were inherently limited to flows in
inertial frames. Consequently, the proper general form of such an
algebraic representation for the turbulent heat flux vector in the
non-inertial frames has been left unexplored.

A general algebraic relation is first obtained from the differen-
tial transport equation for the turbulent heat flux by invoking the
weak-equilibrium condition. Analogous to the derivation of alge-
braic Reynolds stress model (ARSM), this weak-equilibrium condi-
tion assumes that the advection of the turbulent normalized heat
flux is zero. Since the original advection assumption is only valid
for inertial frames, it is necessary to identify the proper form for
non-inertial frames. The same issue was encountered in the deriva-
tion of algebraic representations for the Reynolds stress anisotropy
tensor and has been resolved by invoking a frame-invariant trans-
formation to account for rotation and curvature effects correctly
(Speziale, 1979, 1998; Girimaji, 1997; Weis and Hutter, 2003;
Gatski and Wallin, 2004; Gatski, 2004; Hamba, 2006). As pointed
out by Hamba (2006), the frame-invariant property is not only a
kinematic requirement on the mathematical formulation, it also
serves as a highly useful constraint and tool to form constitutive
equations (Speziale, 1998; Hamba, 2006). By invoking the frame-
invariant concept, the resultant constitutive equations for the Rey-
nolds stress anisotropies are independent of the reference frames,
whether inertial or non-inertial. It has been demonstrated that the
resultant frame-invariant algebraic model for the Reynolds stress
anisotropy is capable of properly accounting for system rotation
and streamline curvature effects (Jongen et al., 1998a,b; Gatski
and Wallin, 2004). Fortunately, it is straightforward to extend this
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methodology to the modeling of vector heat fluxes in non-inertial
frames. By applying this frame-invariant constraint, a coordinate
frame-free algebraic heat flux model can be derived, that can ac-
count for system rotation and streamline curvature effects. Nagano
and Hattori (2003) evaluated an explicit expression for the turbu-
lent heat flux; however, it appears that the algebraic formulation
employed in that is not frame-invariant. Another part of the
weak-equilibrium condition assumes that the diffusion and trans-
port term in the budget of the turbulent normalized heat flux equa-
tion is negligible. This condition is the diffusive-transport
constraint. This constraint removes the differential terms that are
associated with the diffusion and transport processes. Obviously,
its validity is crucial for constructing an accurate AHFM. Wikstrém
et al. (2000) investigated the validity of the diffusive-transport
constraint by comparing the magnitudes of individual terms in
the transport equation for normalized heat flux. They concluded
that the diffusive-transport constraint was appropriate for the
streamwise component except near the wall. For the wall-normal
component, this constraint was not well supported even in the
center of the channel. Nevertheless, their work was limited to iner-
tial frames, and the validity of this constraint in the non-inertial
frames was not assessed. In order to apply the AHFM to flows
involving rotation and curvature effects this constraint needs to
be assessed further. Following (Wikstrém et al., 2000), an assess-
ment of the diffusive-transport constraint in non-inertial frames
can be done by an analysis of the budget of the normalized heat
flux equation using DNS data. Qiu et al. (2008) proposed a near-
wall correction for the diffusive-transport constraint applied to
an ARSM based on a budget analysis of the transport equation
for the Reynolds stress anisotropy. The current study will extend
this work to the modification of the diffusive-transport constraint
for an AHFM.

The present study investigates the validity and subsequent
modification of current weak-equilibrium conditions applicable
to vector heat flux transport equations in non-inertial frames.
The proper form of the advection assumption will be derived by
invoking a frame-invariant property to account for the rotation
and curvature effects correctly. In addition, it will also be shown
that the transport equation for turbulent heat flux can be written
in Euclidean-invariant form by introducing the Jaumann-Noll
derivative. The diffusive-transport constraint will also be
addressed in detail to show that it is not suitable for flows in
non-inertial frames. Based on a budget analysis, a proposal is
made for a near-wall correction to the current diffusive-transport
constraint. An a priori test of the near-wall correction will be
performed for the rotating channel flow with heat transfer using
DNS data.

2. Algebraic model for turbulent heat flux

In this section, a brief description of the derivation of the alge-
braic heat flux model from the differential transport equation is gi-
ven (Wikstrém et al., 2000; So et al., 2004). The weak-equilibrium
condition is invoked to obtain the algebraic relations for the turbu-
lent heat flux analogous to the derivation of algebraic Reynolds
stress models.

The Reynolds-averaged equation for the turbulent mean flow
(without buoyancy) can be written as

uU;
e (1a)
DU _ 10P @ [ oU;

o o o (') b
D& 0 00 —

where U; is the mean velocity, P is the mean pressure, p and v are
the constant density and kinematic viscosity, respectively, uu; is
the Reynolds stress, o is the thermal diffusivity, @ is the mean tem-
perature, and u;0 is the turbulent heat flux with 0 being the temper-
ature fluctuation.

Analogous to the transport equation for Reynolds stress, the ex-
act transport equation for the turbulent heat flux in an inertial
frames (without buoyancy) can be written as

Du;@
‘Dt

where P;, is the production due to the mean temperature and veloc-

ity gradient, ¢;, is the pressure temperature-gradient correlation

term (also known as P&T-Corr.), Z; is the combination of the vis-

cous diffusion, turbulent transport and pressure transport, and &

is the dissipation term (Dol et al., 1997). These terms are given by
00 oU;

- Pl() + d),() + Jz() &io, (2)
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It is noted that the terms containing correlations of second or higher
order in Eq. (2) need to be modeled, and P;, can be treated in an ex-
act manner using second- or lower-order variables. Generally, a
transport model for the turbulent heat flux can be expressed in
terms of the mean velocity and temperature-gradient, the Reynolds
stresses and heat fluxes, and corresponding time scales.

In order to obtain an algebraic relation for normalized turbulent
heat flux, the turbulent kinetic energy k(= ti;u;/2) and the temper-
ature variance k(= 0? /2) are also necessary. Their transport equa-
tions can be written as

Dk
Dt k —+ Pk (43)
DKk
D<t0 =9+ Pg — &. (4b)

In analogy with the derivation of the transport equation for
Reynolds stress anisotropy b;(= uittj/2k — 6;;/3) (Gatski and Wallin,
2004), one can obtain the transport equation for turbulent normal-
ized heat flux & (= u;0/(k'?k})/*)) (Wikstrom et al., 2000; So et al,,
2004; Hattori et al., 2006)

DG 1 & Py Py _a
wa(ﬂo*—@o—ﬁm)—j Tk S_k_l + 7Ty 8_0_1 + 95,

(5)

where 1, = &/k and 1, = &/k, are time scales. Note that the con-
cept of normalized heat flux itself directly conflicts with the linear-
ity principle proposed by Pope (1983), but has been often
abandoned in many scalar transport models (Wikstrém et al.,
2000; So et al., 2004; Hattori et al., 2006). The term 27 is the diffu-
sion and transport of &, which is
a Dy 1. (%

=2 %) ®
Eq. (5) is the transport equation for &;, and which is the basis for the
derivation of the algebraic model. By invoking the weak-equilib-
rium condition (Wikstrém et al., 2000; So et al., 2004), i.e

D¢

99 =0, (7b)
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one can reduce Eq. (5) to an approximate form for the turbulent
normalized heat flux ¢&;:

1 Ql Pk PH
0= W(Pio + ¢ip — Ein) — 5 I:'Ck (8’( 1) + Ty (;0 — 1):| (8)

To extract the AHFM, specific models for the pressure temperature-
gradient correlation ¢;, and the dissipation term ¢, are necessary. A
rather general model for the combined effect of ¢;, and & that has
been studied previously (Wikstrém et al., 2000) is considered here,
and can be written as

k __20\¢ oU;
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where Cyy ~ Csy are model coefficients. Substituting Eq. (9) into Eq.
(8), one obtains

26;
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where Cp,=1-Cy, Cs=1—-Cy—Csp, Cyw=1—-Cy+C3 and
= (k/ky)"? (00 /ox;). The strain-rate tensor S and vorticity tensor
Wi are given as

_1au Ay
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Eq. (10) can be expressed in a functional form as
Ozfi(bkmaskm7wkmafm7@m)~ (12)

Eq. (10) is the general model equation used for predicting the turbu-
lent heat flux; however it is only valid for flows in inertial frames. In
non-inertial frames, modification must be made to Eq. (10) to ac-
count for system rotation and/or streamline curvature effects. Since
the weak-equilibrium condition is the basis for deriving the alge-
braic representation from the modeled normalized heat flux equa-
tion, it is straightforward to identify an extended weak-
equilibrium condition that is valid both in inertial and non-inertial
frames.

3. Frame-invariant form of AHFM
3.1. Frame-invariant form of transport equation for &;

The transformation between inertial and non-inertial frames for
the normalized heat flux transport equation is briefly described
here. Following the work of Gatski and Wallin (2004) and Hamba
(2006), the rectangular coordinates x; in the non-inertial frame
transforms to the coordinates in the inertial frame x; as

Xi = QyX}, (13)

where Q; is an orthogonal transformation tensor.
The system rotation tensor expressed in the x; coordinates is gi-
ven by

* d 1
anu% €}, (14)

where € is the permutation tensor, and wj, is the angular rotation
rate vector. The system rotation tensor expressed in the x; coordi-
nates € is zero by definition.

Under the above transformation rule, the variables appearing in
the transport equation of the normalized turbulent heat flux can be
transformed as

by = Qubjp Q. (15a)
Sij = QikSZmQInjv (15b)
Wi = Qit(Wign + Qi) Quy (15¢)
&= Qyé. (15d)

For a Euclidean transformation, it is readily seen that, b;, S; and ¢;
are all frame-invariant while the vorticity tensor W is not. How-
ever, W; can be made frame-invariant by adding a measure of the
non-inertial frame rotation rate €;

Wi = Wi + Q. (16)

Similarly, the material derivative of the normalized turbulent heat
flux D¢;/Dt can be transformed as

D¢ D& _—
gj QJ' ( ‘kagk> . (1 7)

The transport equation of turbulent normalized heat flux now can
be transformed to the coordinates x;, which can be written as

Dgl
Dt

The above result shows that the normalized turbulent heat flux equa-
tion, given by Eq. (18), is not frame-invariant with respect to a change
of coordinate system under a Euclidean transformation, since Eq.
(17) is not frame-invariant. This is, however, inconsistent with the
general understanding that physical laws should be independent of
the choice of coordinate systems. This apparent inconsistency can
be overcome by introducing the Jaumann-Noll derivative (Trusov,
1987) also called corotational derivative (Thiffeault, 2001).

+th£l< 7f (bkm’szwwltm’ér*n’@:n)' (18)

Da Da
W:W+Qa, (193)
Db Db
D= Dpbe-ob, (19b)

with a and b being a vector and tensor, respectively. Applying Eq.
(19a) to Eq. (17), one can derive a frame-invariant form of the mate-
rial derivative of the turbulent normalized heat flux

D_l{ = D_l{ + Q- (20)
Eq. (18) then becomes

ﬁ K * sk *

Dl’ f (bkmvs kavgmv@m)' (21)

In this form, the transport equation of normalized turbulent heat
flux, Eq. (21), is now frame-invariant, since the corotational deriva-
tive Dg /Dt is a frame-invariant operator since W* is frame-invari-
ant, and the RHS of Eq. (21) is expressed in terms of frame-invariant
variables. Consequently, any model expression derived from Eq.
(21) should also be frame-invariant.

3.2. Euclidean invariant form of AHFM

Eq. (21) is not suitable for curved flows, and should be further
generalized. To this end, the coordinate system x| that is embedded
in the flow and the coordinate system x; in which the observer is
fixed are considered here. The transformation rule between x| sys-
tem and inertial system is given by

x| = Tyx;, (22)

where Tj is a proper orthogonal transformation tensor.
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With this transformation rule, the turbulent normalized heat
flux equation can be described in the xl‘ system as

D¢
Dfl + ‘Q fJr (Ika7 km7 I<m ’ fT @T ) (23)

where Q’)‘ = T,de ;/dt is the rotation rate of the x‘ system ex-
pressed i 1r1 the x! system Eq. (23) can be written in the inertial sys-
tem as

D¢l
Dtl + sz &=

where Q) = T, Q0T is the rotation rate of the x| system ex-
pressed in the inertial system. By applying the weak-equilibrium
condition D¢} /Dt = 0, the resultant implicit algebraic equation for

& will have the following form in the inertial system
fi(bkm7skm7 ka-, émv @m) - Q;,?ék =0. (25)

Once again, considering the observer in the x; coordinate sys-
tem, it is straightforward to transform Eq. (24) to the non-inertial
system x;. It follows

f(bkmaskms Wkl’l'h émv @m)7 (24)

QJIT]TI D; + ‘ka gk 7f (bkm‘rskm’ W m T ka >y Cmo @m> (26)
Irrespective of the coordinate system, the correct form of the weak-
equilibrium condition should be (Gatski and Wallin, 2004)

D¢/ /Dt =0, (27)

which is an extension of the original condition. The resultant impli-
cit algebraic equation for ¢; in the non-inertial system can then be
given by

0" = ;' (on: Soms Wi + 24y €31, 01,)- (28)

It is clear that the AHFM written in Eq. (28) is frame-invariant, since
it is expressed in terms of frame-invariant variables. It is important
to note that ©; is different from QEJ.”*. The former represents a mea-
sure of the rotation rate of the flow, while the latter represents the
rotation rate of the observer. If the x; system coincides with the x]
system, Q; = ng.r)* is obtained. Note that ng.r)* should be used for
general cases, for example, in the case of curved turbulent flows,
which is usually analyzed relative to an observer fixed in an inertial
frame. Consequently, the problem that arises is how to measure
”* for such curved flows. There are some works related to this is-
sue such as Girimaji (1997), Gatski and Jongen (2000), Wallin and
Johansson (2002), among others.
Eq. (10), which is expressed in an inertial frame, can be rewrit-
ten in a non-inertial frames as

*vk 26' * * * k
e <2b + 1)@ ~CsSi¢ - CW(WU.+Q§;> )51,

! P, P
—gz—'{ <—"—1+2Cm>+r(,{—0(1—2C50)—1”. (29)
& &y

k

Eq. (29), which is derived based on an extended weak-equilibrium
condition (Eq. (27)), has the ability to predict the turbulent normal-
ized heat flux for flows in the non-inertial frames. By comparing
with Eq. (10), one can see that Eq. (29) has an extra term Q{"¢; that
describes the advection of ¢; in the non-inertial frame, and the mean
vorticity in Eq. (10) has been replaced with the absolute vorticity.

3.3. A priori test of extended advection assumption

To demonstrate the validity of the extended advection assump-
tion, an a priori test is performed using a DNS database (Nishimura
and Kasagi, 1996; Kasagi and lida, 1999; Elsamni and Kasagi,
2001). The test case adopted here is a fully developed turbulent

flow in a plane channel that is rotated at a specified angular veloc-
ity around its spanwise axis. The Coriolis force arising from the im-
posed system rotation enhances the turbulence along the pressure
side, while reduces the turbulent activity along the suction side.
The two walls are assumed to be kept at different, but constant
temperatures, and any buoyancy effect is neglected. The simulated
channel flow is characterized by a bulk Reynolds number, Re,
(based on the channel half-width h and the bulk velocity U,), of
4750, and a Prandtl number, Pr, of 0.71. The rotation number is de-
fined as

Ro = 2wnh/Up, (30)

where wy, is the system angular velocity.
Eq. (5) can be transformed to a non-inertial frame and rewritten

as
D&, g 25; . e
D1 +Ql] j = <2b + U) SUE] (W +Qu>gj
1 . ff Pk P(; _a
+k1/27k(1)/2(¢i075i0)*71 {Tk (8771> +‘E0<8771>} +;.
31)

If the original advection assumption (the left-hand side of Eq.
(31) is set to zero), one has

<2b 20'})

X . N s 1
=S¢ — (Wij + Qij) &+ W(d)m — &)

— ii ﬂ — @ — g4
5 {T"<s 1) +Tg<8 1)} + 9, (32)
and if the extended assumption Eq. (27) is applied, one has

* v* 251 * * ook * * * ]
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0

_ﬁ &_ &_ 74
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If models for the pressure temperature-gradient correlation ¢;,, the
dissipation term &, and diffusive-transport term %}, are specified,
Egs. (32) and (33) are easily cast into an implicit form for the AHFM
(c.f. Eq. (29)). However, in order to validate the extended form of the
advection assumption, no model influence should be allowed;
therefore, Eqs. (32) and (33) are used to perform the a priori test di-
rectly. The DNS data is used to obtain ¢, €&y and 2{ so that the
residuals of Egs. (32) and (33) can be computed.

Since no models are introduced, the magnitude of any residual
can be directly associated with the validity of the two assumptions.
The results shown in Fig. 1 are the distribution for Ro = 0.159. It is
shown that the extended assumption gives practically zero
residuals for the two components &; and &, across the channel. This
means that the extended assumption is able to fully account for the
rotation effect for flows in non-inertial frames. This is in contrast to
the original assumption where large residuals across the channel
for all two components are shown.

4. The diffusive-transport constraint

The weak-equilibrium condition consists of an advection
assumption and a diffusive-transport constraint. The previous sec-
tion focused on the advection assumption, which was adapted to
the non-inertial frames. In this section, the focus will be on the dif-
fusive-transport constraint. It is true that the system rotation and
streamline curvature can significantly influence the transport pro-
cess in turbulent flows. This can be observed from numerous com-
putations and experimental studies, such as Kasagi et al. (1992),
Matsubara and Alfredsson (1996), Yamawaki et al. (2002), Wu
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Fig. 1. The a priori test of extended advection assumption. Residual of Eq. (32) (circle) compared to that of Eq. (33) (solid line). The dash line is for the extra term Q;¢&;.

and Kasagi (2004), Liu and Lu (2007). Consequently, a question
arises whether the usual assumption for diffusive- transport can
hold in flows involving rotation and curvature effects. The same
question for the diffusive- transport assumption associated with
Reynolds stress anisotropy tensor has been recently explored by

Production Anis.

Qiu et al. (2008) using a budget analysis of the Reynolds stress
anisotropy equation together with the near-wall asymptotic
behavior. For the current study, an analogous strategy will be em-
ployed to address the issue of the diffusive-transport assumption
associated with turbulent normalized heat flux.
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Fig. 2. The budget of Eq. (34) for & LHS: pressure side, RHS: suction side.
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Fig. 3. The budget of Eq. (34) for &, LHS: pressure side, RHS: suction side.

Table 1

Near-wall behavior of budget terms in Eq. (34)

i 1 2
Production 0y?) 0y?)
Diffusive-transport oy) —(1/p)beq,
P&T-Corr. 0y?) (1/p)beay
Dissipation o) o)

4.1. Budget of turbulent normalized heat flux equation

Analogous to the derivation of the transport equation for
Reynolds stress anisotropy bj;, one can obtain a transport equation
for the normalized turbulent heat flux ¢&; in fully developed rotating
channel flow

P 7,
0= {Pie *% (Rpk +§0)} |:Jz€ -5 (RJk R )} + i
. e
- {81‘0 - % (ng + ﬁ)} )

where R = k”2 /kl/z. One may interpret the terms on the RHS as pro-
duction anisotropy, diffusive-transport, pressure temperature-gra-
dient correlation and dissipation anisotropy. It is noted that the

(34)

Pm here includes the production due to mean temperature-gradient
J‘,, the production due to mean velocity gradient P% and the Coriolis
production Cj. The weak-equilibrium assumption takes the diffu-
sive-transport as negligible, which leads to an algebraic approxima-
tion for the transport of turbulent normalized heat flux.

The budget of the various terms in Eq. (34) is evaluated by using
DNS data (Nishimura and Kasagi, 1996; Kasagi and lida, 1999;
Elsamni and Kasagi, 2001). Fig. 2a and b show the budget of
&;-component for the non-rotating case, where the production
anisotropy is the dominant source, while the pressure tempera-
ture-gradient correlation is the dominant sink. Closer to the wall,
the production anisotropy and pressure temperature-gradient cor-
relation decay rapidly, and the diffusive-transport and dissipation
rate anisotropy appear as the dominant source and sink. For the
rotating cases, the significant influence of rotation effects can be
found by examining Fig. 2c—f, where the turbulent intensity is en-
hanced along pressure side, while reduced along the suction side.
The production anisotropy becomes the dominant sink for the
rotating case, which contrasts with the non-rotating case. The dif-
fusive-transport is obviously enhanced by the imposed rotation ef-
fect, since it becomes the dominant source rather than sink term.
The pressure temperature-gradient correlation is suppressed grad-
ually with increasing rotation number, and becomes less important
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across the channel. The dissipation anisotropy is also remarkably
influenced by the system rotation, since its sign is changed with
different rotation numbers. Nevertheless, for the near-wall region,
the diffusive-transport and dissipation anisotropy, which are re-
lated to viscous effects, are crucial.

The behavior of the individual terms in the budget equation for
&,-component is different with that of ¢;-component. Since it is the
wall-normal component, the pressure fluctuation dominates the
near-wall behavior of budget equation instead of the viscous term.
For the non-rotating case, Fig. 3a and b show that the dominant
source is the pressure temperature-gradient correlation, while
the production anisotropy is the sink. Closer to the wall, the pro-
duction anisotropy and dissipation anisotropy become less impor-
tant, while the pressure temperature-gradient correlation and
diffusive-transport, which are related to the pressure fluctuation,
keep balance with each other, and attain finite values on the wall.
For the rotating cases, similar to ¢;-component, the imposed rota-
tion effects influence the budget significantly. The diffusive-trans-
port becomes more important, while the dissipation anisotropy
continues to be small across the channel. Similar to the non-rotat-
ing case, the diffusive-transport and pressure temperature-gradi-
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ent correlation, which are related to the pressure fluctuation,
become more important near the wall.

For all cases discussed above, the pressure temperature-gradi-
ent correlation balances the sum of the diffusive-transport plus
dissipation anisotropy, which indicates that the diffusive-transport
plays a crucial role in the budget of ¢; transport equation for near-
wall region. Consequently, the diffusive-transport constraint, that
neglects the diffusion-transport term, is unlikely to hold there.

4.2. Modification of diffusive-transport constraint

The analysis of the budget of the ¢&; transport equation has
shown that the current diffusive-transport constraint is not valid.
Qiu etal. (2008) attempted to resolve this problem by representing
the diffusive-transport by the sum of redistribution and dissipation
anisotropy terms associated with the Reynolds stress anisotropy.
For current study, this same approach will be extended to the dif-
fusive-transport assumption associated with normalized turbulent
heat flux. First, the near-wall behavior of individual term in the
budget equation of ¢; is analyzed. Based on that analysis, the
near-wall correction for diffusive-transport constraint is proposed.
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Fig. 4. Validation of present near-wall correction of diffusive-transport constraint for ¢; LHS: pressure side, RHS: suction side. The present constraint (solid line) compared to

DNS (circle).
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4.2.1. Near-wall behavior of normalized heat flux equation

To analyze the near-wall behavior of individual terms in the
budget equation, the pressure, velocity and temperature fluctua-
tions (Wikstrom et al., 2000; So et al., 2004) are expanded in a
Taylor series in the vicinity of the wall as follows:

P=0+bpy+cy’+-, (35a)
u=a;+by+cy’ +--, (35b)
6=a0+bgy+cgy2+---, (35C)

where a; = b, = a, = 0 (no-slip boundary condition, continuity and
constant wall temperature).
The expansions of uf, v and k, then become

uf = byb,y? + (ﬁ + ﬁ)f +-- (36a)

U0 = byC2y? + (body + Col2) + -+, (36b)
1= —

ky = ibﬁy2 +bycy® + - (360)

The expanded budget terms in Eq. (34) are listed in Table 1, where
only terms ¢(y°) are listed, and budget terms of second order and
higher are omitted. For & -component, the diffusive-transport and
dissipation anisotropy are of lower order compared to the produc-

tion anisotropy and pressure temperature-gradient correlation,
which indicates that they are more important in the near-wall re-
gion. The production anisotropy and pressure temperature-gradient
correlation decay rapidly in the near-wall region; while the diffu-
sive-transport balances the dissipation anisotropy up to the wall.
For &,-component, Table 1 shows that the diffusive-transport and
pressure temperature-gradient correlation are the major contribu-
tors near the wall, while the production anisotropy and dissipation
anisotropy decay faster and eventually vanish on the wall.

4.2.2. Near-wall correction of diffusive-transport constraint

The above analysis indicates that for the &;- and &,-component,
the fact that diffusive-transport balances the sum of pressure tem-
perature-gradient correlation plus dissipation anisotropy suggests
an alternative form for diffusive-transport constraint. One can use
the sum of the pressure temperature-gradient correlation plus dis-
sipation anisotropy to represent the diffusive-transport in the
near-wall region. Thus, based on the above analyses, an alternative
form for the diffusive-transport constraint can be given by
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where f; is a model function, and for the present case, the following
general form can be used

fim1- {pexp (WHZ, (38)

A

where y™ = yu,/v and u, is the friction velocity. The Prandtl number
Pr and Reynolds number Re have a significant influence on the sca-
lar field (Kim and Moin, 1987; Kawamura et al., 1998, 1999). So and
Speziale (1999) suggested any near-wall models should reflect a Pr
dependence; otherwise, they would not be able to replicate the
thermal asymptotes correctly as a wall is approached. The above
arguments imply that the proposed diffusive-transport constraint
should be made parametric of Pr, which means that the /. should
have a Pr dependence; however, in the current study, a constant
/.= 6 value was chosen, but its universal validity should be a topic
for future study. As Eq. (38) shows, f; approaches unity in the vicin-
ity of the wall, and vanishes away from the wall. Consequently, one
can restrict the effects of pressure temperature-gradient correlation
and dissipation anisotropy within the near-wall region.

From the above asymptotic behavior and budget analysis, the
near-wall diffusion and transport of ¢; are mainly due to pressure
transport and viscous diffusion effects, and both of which must
be properly approximated. For the & -component, the pressure
fluctuation contributions on both sides of Eq. (37) are negligible,
which means that the viscous diffusion part of the LHS balances
the viscous dissipation anisotropy part of the RHS. For the &,-com-
ponent, the viscous parts of both sides of Eq. (37) are negligible,
which leaves the pressure transport part of the LHS to balance
the pressure fluctuation contribution on the RHS.

4.2.3. Evaluation of proposed constraint
By adopting the present diffusive-transport constraint, Eq. (34)

can now be written as
< P $ifp. €
5 (rer )]+ {or- s -5 (R )| Ja -
(39)

This equation indicates that the diffusive-transport constraints
need to be incorporated in a manner so that both the pressure tem-
perature-gradient correlation and dissipation anisotropy disappear
near the wall. It should be noted that the validity of this form is
unaffected by the system rotation since the balance between the
pressure temperature-gradient correlation and pressure transport
and that between the viscous diffusion and dissipation anisotropy
persist regardless of the rotation number as has been shown in Figs.
2 and 3.

An a priori test is performed to evaluate the present diffusive-
transport constraint given in Eq. (37). Both sides are computed
using the DNS data and compared with each other. For the &;-com-
ponent, Fig. 4 shows that the newly proposed diffusive-transport
constraint gives fairly good agreement with DNS data for y* <5
for both the non-rotating and rotating cases, and which is an
improvement compared with the original proposal. For the &,-
component, Fig. 5 shows that the present diffusive-transport con-
straint can also give good agreement for y* < 10 compared to
the DNS data.

It should be noted that when compared with the Reynolds
stress case (Qiu et al., 2008), where the extended constraint gave
excellent agreement with the DNS data for all Reynolds stress
components, the extended constraint developed in the present
study yields some noticeable discrepancies with the DNS data
in some cases. In both the Reynolds stress and heat flux cases,
the production terms are assumed to be negligible. This assump-
tion is well supported in the case of the Reynolds stresses, of
which, the production becomes negligible in the vicinity of the

0= [Pm

wall. However, for the heat flux cases, the production remains
small but non-negligible for y* < 10 in some cases (see Figs. 2
and 3). Nevertheless, the above analysis indicates that the present
alternative diffusive-transport constraint has the potential to im-
prove the AHFM, once accurate models for pressure temperature-
gradient correlation and dissipation anisotropy in Eq. (34) are
provided.

5. Conclusion

This study has focused on the validity and extensions of the
weak-equilibrium condition in non-inertial frames. The weak-
equilibrium condition, which consists of an advection assumption
and a diffusive-transport constraint, is the basis to derive the alge-
braic heat flux model from the differential transport model. The
frame-invariant concept is invoked in this study to extend the ori-
ginal advection assumption for flows associated with rotation and
curvature effects. Moreover, the frame-invariant form of AHFM is
derived by using the extended weak-equilibrium condition. It is
also shown that the transport equation of normalized heat flux
can be written in a Euclidean invariant way by introducing the Jau-
mann-Noll derivative.

A budget analysis of the various terms in the exact transport
equation for ¢ shows that the diffusive-transport is crucial in the
near-wall region. An asymptotic analysis of the near-wall behavior
shows that, the diffusive-transport keeps balance with the sum of
pressure temperature-gradient correlation plus dissipation anisot-
ropy in the vicinity of the wall, while production anisotropy is
small. An alternative form of the diffusive-transport constraint is
proposed and evaluated using DNS data. The analysis shows that
the newly proposed alternative constraint has the potential to im-
prove the predictive ability of the resultant AHFM.
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